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1. Introduction.-In a recent pathbreaking article,' Scarf has given a com-
binatorial theorem and an algorithm related to it for computing approximations
of fixed points of continuous mappings of a simplex into itself. Although it is
similar in statement to Sperner's lemma, Scarf proved his theorem by a construc-
tive method that is different from the customary proofs of such combinatorial
results. Thus, he has opened the possibility of efficient computation for a large
class of nonlinear optimization problems that can be cast as fixed-point problems.

It is the purpose of this note to state the precise connection between Scarf's
theorem and Sperner's lemma.2 4 This connection is contained in a theorem
which asserts that the combinatorial structure provided by primitive sets is a
special case of that afforded by topological subdivisions. Viewed in the light of
this result, Scarf's theorem is a corollary of Sperner's lemma. I\Iore important,
the theorem has suggested the construction of a number of variations on the
basic algorithm, all using Scarf's idea of a systematic search but within the
context of simplicial subdivisions. In this note, proofs will only be sketched and
but one new algorithm proposed; details of the proofs, the description of other
algorithms, and computational experience will be published elsewhere.

2. Definitions and Notation.-Let X = (xo, xI, . . ., Xn) denote a point in an
(n + 1)-dimensional real vector space. Two n-simplices contained in the
n-dimensional hyperplane H = {XI x, = 1i will appear in the discussion; these

are S = {XI allkx <1} nfH, and T = {XI allxk . OflnH. The extreme points
of S will be denoted by XJ = (xkJ), where xkJ = 1 - n if k and xkJ = 1 otherwise,
for j = 0, 1, . . ., n. Following Scarf, we introduce subdivision points Xnl-,
... ,XN chosen arbitrarily within T. As set of n + 1 points (XJo, X1, ..., Xfn)
from P = {XO, X1, ..., X Xn+1, ..., XNI is called primitive if there is no vector
X} e P such that XkJ > mint )X0k,xkj, . ., Xk f} for all k. In framing these defini-
tions, we have used a different set of points for X0, XI, . . ., Xn than that employed
by Scarf to simplify the statement of the theorem of the next section.
To ensure the validity of Scarf's theorem and its connection with the Sperner

lemma, it is necessary to make the following assumptions which can be ensured
by a perturbation of the subdivision points.
NONDEGENERACY ASSUMPTION. For each k = 0, 1, ..., n, the value of min

I XkJo, ..., X ki} is achieved by exactly one xkJ, for every set of n + 1 points
X Jo, Xi, . .., XJn} from P.
The covering simplex of a set of n + 1 points { X o, X1, ..., Xjn} fromP is de-

fined as
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I Xlxk >- mintxk°o, xkJl, . . ., xjJ-1 for all k}.

With the Nondegeneracy Assumption, this set is a closed n-dimensional simplex
contained in R. Each of its faces contains exactly one point from the given set,
namely that point for which the coordinate corresponding to that face is a mini-
mum. A set of n + 1 points is primitive if and only if no XJ e P lies in the interior
of its covering simplex.

3. Scarfs Theorem and Sperner's Lemma.-The connection between the con-
cept of primitive sets and the classical topological subdivisions is provided by
the following result.
THEOREM. Let subdivision points X"+l, . ., XN be chosen from T so as to sat-

isfy the Nondegeneracy Assumption. The the family of primitive sets from P de-
fines a pseudomanifold with the simplex {XO, X1, ..., X"} deleted. If n = 2,
the family of primitive sets determines a simplicial subdivision of S, in which the
simplices are the convex hulls of the primitive sets.

Recall that a pseudomanifold on the points P is a family D of sets of n + 1
points from P (called n-simplices) such that if a set of n points is a subset of a
set of D, then it is a subset of exactly two sets of D. (Normally, connectedness
is also required; this is unimportant in this context.) To state the version of
the Sperner lemma that applies here, define a proper labeling of a pseudomanifold
with the simplex IXo, XI, .. ., X"} deleted as an assignment of a label 1(X) e

{O, 1, .I. ., n} to each point in P such that 1(XJ) = j for j = 0, 1, .. ., n.
SPERNER's LEMMA. For every proper labeling of a pseudomanifold with the

simplex {XO, Xl, . . ., Xn} deleted, there exist an odd number of sets in D, each with
a complete set of labels {o, 1, .I.., n}.
COROLLARY (SCARF's THEOREM). Let subdivision points Xn+,, ..., XN be

chosen from T so as to satisfy the Nondegeneracy Assumption. Let a label 1(Xi)
4I 02 1, .. ,n} be assigned to each XJ eP withl(XJ) = jfor j = 0, 1, . . ., n. Then
there exist an odd number of primitive sets, each with a complete set of labels {0, 1, ....
n}.

Proof: The corollary follows immediately from the theorem above and the
version of Sperner's lemma stated here.

4. Structure of the Algorithms.-The basic idea behind the algorithms of sys-
tematic search for a simplex of the subdivision with a complete set of labels can be
explained in graph-theoretical terms. Consider a graph in which each node
corresponds to a simplex of the subdivision with {O, 1, . .., n - 1 } among its labels.
A branch connects two nodes if and only if the intersection of the two associated
simplices has exactly the labels {O 1, .. ., n -1 }. We shall assign the nodes of
this graph to three classes as follows:
A: the simplex has labels {o, 1, .. ., n - 1i in the boundary of the original

simplex.
B: the simplex is not in A and has some label repeated.
C: the simplex has labels 10, 1, . ... nI.
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We shall denote generic members of A, B, C by a, fl, and -y; note that A and C
need not be disjoint but that B is disjoint from A and C. Each node of the graph
is incident to at most one branch (classes A and C) or exactly two branches (class
B). Therefore, the components of the graph fall into four types (where all inter-
mediate nodes, if any, are al's): (i) a....a; (ii) a. . .'y, which may degenerate to
a = 7y; (iii) . . ..7; (iv) cycles composed of al's.
Let there be ni, n2, and n3 components of the first three types, respectively.

If we let the number of nodes of types A and C be a and c, respectively, we have
2n1 + n2 = a and n2 + 2n3 = c, and hence 2(ni + n2 + n3) = a + c. Therefore, a
and c have the same parity.
Within this framework, the algorithm of Daniel I. A. Cohen3 may be considered

as examining the components beginning with a node a until a component term-
inating with a node y is found. The initiation of his algorithm requires the avail-
ability of all nodes of class A, which is assured by a nonconstructive assumption.

For the pseudomanifolds corresponding to Scarf's primitive sets as given in the
preceding section, the setA consists of the single simplex containing {XO, X1, ...

X-1j, and hence if we examine the successive nodes in the component that it ini-
tiates, we must terminate at a node y.

In the algorithm to be proposed in the next section, another method is used to
ensure that we have a subdivision with but one node a.

5. An Algorithm.-The algorithm to be proposed utilizes a standard subdivi-
sion used previously for a proof of a cubical Sperner lemma.4 If we let T =
IXIx = (0, xl, . . ., Xn) _ 0, E xk = 1} as before, then a subdivision of T is de-

fined by a positive integer D. The vertices of the subdivision are (kO/D,
kn/D), where the k, are nonnegative integers and kj = D. A simplex of the

subdivision can always be specified in a very compact form by giving a vertex
XI = (ko°/D, . . ., kn0/D) and a permutation ir = (ji, j., i,) of (1, ..., n). The
vertices of the simplex are then defined recursively by

DXt = (kt,- kt-1 - 1, kjt-1 + 1, ..., k/1)
for t = 1, ..., n.

If we drop one vertex of a simplex of this subdivision, then either there is a
unique new vertex that can be introduced to form a new simplex, or the remaining
vertices lie in the boundary. The new vertex to be introduced may be calculated
by a simple formula.
We assume that the vertices of T have been provided with a proper labeling

(for T, this means that 1(X) = k implies xk > 0). To initiate a systematic search
for a simplex with a complete set of labels, we need a unique starting simplex of
class A. Since there is no guarantee that such will exist, we provide one by en-
larging our original simplex by one layer of the subdivision on all sides and by pro-
viding a special labeling on this extra set of vertices. Precisely, we enlarge T to
T = I XI all x, . -1 and Ex, = 1} and define 1(X) = smallest index 1 for which

xl = maxk{ xk} if some Xk < 0. This device has an obvious geometric motivation
that will be provided in the detailed version of this note.
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The algorithm is defined by the flow diagram that follows; in the algorithm,
d is a positive integer and D = nd. At each stage, we keep only a record of XO
(multiplied by D to keep the data in integers), ir, and the vector L of labels of
the current simplex specified by XO and ir.

X = (d + 1, di ..., d-1)
7r = (1,,2...,n)
L =(0,1,l n 1,-1)

X= (ko, ki, , kn)
Tr Ub(JlX2Y in)
L= (lo, i, ...,jln)

Compute X8 for
s such that Is = -1

Compute 1(X8)

ji(X8) = n
.

I(X ) # n

1(X8) n7

Change [XO, ir, LI
(where Xt is deleted)

11
Set 15 = 1(X8)

Find t such that
It = 1(X8)

Print X0, X1, Xnl

Flow Diagram of Algorithm

The only part of the flow diagram that may need explanation is the changes that
must be made in [XO, 7r, L] when Xt is deleted. These changes are specified in
the table below

XK = (ko, kl, ... * kn)
becomes

(kol ...., kji -1,
kji+ 1, ..., kn)

(ko, k,, . . ., kn)

(ko, . . ., k,,-l + 1,
kj-1, . *., kn)

T = (ji. . .) in)
becomes

(i2y * * -line jl)

( b .. .) tl(j,1, ***,Jt+i,

it.. ..jn)

(winX. ..* in-1)

The advantages of the proposed specification of a simplex and its modification
over Scarf's original proposal' are the following: (a) no problem of degeneracy;
(b) no search procedure; and (c) fixed and small memory requirements. More

t = o

O< t < n

t = n

L = (low1,l . ., In)
becomes

(111 12 . . .* lni -1)

(6Xy . . ., It-l,-1
lt+bx * * .X In)

(-I X lo, 117 . . .2 ln-1)
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than a year ago, Terje Hansen' discovered the same compact description and
associated pivot steps; he has used them in an extremely effective manner for a
computer program that uses the same initial a as Scarf's algorithm. Lloyd
Shapley5 has also proposed and programmed a variable-dimension algorithm that
uses a compact description of a barycentric subdivision of a simplex.
The current limitations on the problems that can be solved by these algorithms

are therefore not in storage but in the total number of iterations. Computational
experience will be reported in another article.

* The preparation of this paper was supported, in part, by the Office of Naval Research.
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